

Рекомендации по обеспечению информационной безопасности при работе с мобильными решениями

В документе описаны механизмы защиты информации, используемые в мобильных решениях к системе Directum.

Согласно ГОСТу P50922-2006 «Защита информации», информация считается защищенной при условии обеспечения ее конфиденциальности, доступности и целостности. В системе Directum это достигается с помощью использования программно-технических средств:

- управление доступом: идентификация пользователей в системе и контроль прав доступа;
- регистрация и учет данных: логирование и ведение истории работы с объектами;
- криптография: шифрование текстов и подписание ЭП.

Содержание

екомендации по обеспечению информационной безопасности при работе с юбильными решениями1		
Общие механизмы защиты информации в Directum	2	
Аутентификация	2	
Криптография	2	
Мобильные приложения	5	
Безопасность сети предприятия	6	
Использование DMZ и брандмауэров для защиты веб-сервера	6	
Безопасность передачи данных	8	
Безопасность устройства	9	
Электронная подпись	10	
Безопасность данных	13	

Общие механизмы защиты информации в Directum

Аутентификация

В мобильных решениях Directum Jazz и Directum Solo предусмотрено два способа аутентификации:

- аутентификация путем ввода реквизитов и их последующей передачи по каналам связи (Windows-аутентификация, аутентификация по паролю). Для использования этих типов аутентификации рекомендуется обеспечить безопасность каналов связи и устройства пользователя;
- аутентификация с помощью клиентского сертификата можно использовать только для входа пользователей, которые авторизуются в системе Directum с помощью Windows-аутентификации. Данный тип аутентификации является наиболее безопасным, поскольку:
 - реквизиты пользователя не хранятся на устройстве и не передаются по сети;
 - для его работы требуется настройка HTTPS-соединения и блокировка устройства с помощью пароля или PIN-кода.

Криптография

В системе Directum есть возможность подписывать электронной подписью и шифровать тексты документов и задач.

Подписание документов электронной подписью (ЭП) позволяет заменить традиционные печать и подпись, гарантируя авторство подписи и неизменность текста. После подписания текст документа становится недоступным для изменения.

Шифрование предназначено для дополнительной защиты документов и задач и позволяет скрыть их от администраторов системы и замещающих.

Способы подписания и шифрования текстов:

- подписание на основе сертификата;
- шифрование на основании сертификата;
- шифрование с паролем.

Чтобы пользователи могли подписывать и шифровать тексты на основе сертификата, администратор выдает и регистрирует сертификаты, а также настраивает на рабочих местах модули шифрования и подписания.

Примечания

- 1. Для подписания и шифрования текстов в веб-доступе на компьютере пользователя должен быть установлен Агент веб-доступа.
- 2. В мобильных приложениях Directum не поддерживается работа с шифрованными документами, задачами и заданиями. Если документ зашифрован с помощью сертификата, в NOMAD-приложение передается только ссылка на документ.

В стандартную поставку системы Directum входят три модуля, которые используют разные криптографические средства.

Модули устанавливаются автоматически при установке клиентской части системы Directum. Возможность использования зависит от установленного программного обеспечения.

		· ·
Модуль	Действие	Требуемое ПО
Standard Encryption	Шифрование Подписание	Microsoft .NET Framework 3.5 SP1 и выше
GOST Encryption	Шифрование Подписание	Криптопровайдер КриптоПро или ViPNet, Microsoft .NET Framework 3.5 SP1 и выше
Bicrypt Signing	Подписание	Криптопровайдер Бикрипт

Standard Encryption

Модуль расширения Standard Encryption используется для шифрования и подписания по алгоритмам 3DES, RSA и DSA и ECDSA.

Поддерживаются сертификаты, выданные программно через CryptoAPI или Cryptography API: Next Generation (CNG).

GOST Encryption

Модуль расширения GOST Encryption используется для шифрования и подписания по алгоритмам ГОСТ. Для использования модуля расширения необходим криптопровайдер КриптоПро или ViPNet.

Bicrypt Signing

Модуль расширения Bicrypt Signing используется для подписания электронной подписью. Для использования модуля расширения необходим криптопровайдер Бикрипт-КБС-С.

При выборе СКЗИ (средства криптографической защиты информации) следует обращать внимание на наличие и срок действия сертификации СКЗИ в государственных органах, а также на класс защищенности. Так, например, криптопровайдер Бикрипт имеет сертификат соответствия ФСБ: его можно использовать для обеспечения целостности и подлинности информации, не содержащей государственную тайну.

Для использования любого модуля расширения администратор задает настройки модуля в окне параметров системы Directum на закладке «Модули расширения». Подробнее см. в руководстве администратора, раздел «Модули подписания и шифрования».

В организации можно установить собственный центр сертификации – службу сертификации Active Directory. Службы сертификатов Active Directory можно использовать для создания одного или нескольких центров сертификации, которые будут получать запросы на сертификаты, проверять

данные запросов, идентифицировать запрашивающую сторону, выдавать и отзывать сертификаты, публиковать данные об отзывах сертификатов. Следует учитывать, что сертификаты, выдаваемые собственным центром сертификации, не будут считаться квалифицированными.

Подробнее порядок установки и настройки службы сертификации Active Directory и ее компонентов см. в руководстве администратора, в разделе «Центр сертификации».

Примечание

В разделе описан пример настройки службы сертификации. Настраивайте службу сертификации Active Directory и ее компоненты с учетом политики безопасности предприятия.

В целях повышения безопасности данных закрытые ключи, используемые для шифрования и подписания документов Directum, рекомендуется хранить на съемных носителях. Например, в качестве такого носителя может выступать электронный идентификатор Рутокен. Безопасность обеспечивается тем, что подписание производится непосредственно на токене, закрытый ключ при этом недоступен вне токена. Токен сертифицирован ФСБ и ФСТЭК, поэтому, ЭП, установленная на документ с их помощью считается квалифицированной.

Объектная модель IS-Builder позволяет программно устанавливать ЭП в расширенных форматах CAdES-XL и CAdES-A. CAdES-XL обеспечивает защиту от подмены сертификата и возможность офлайн-проверки подписи. CAdES-A, дополнительно к CAdES-XL, обеспечивает юридическую значимость документов при их длительном хранении за счет использования архивных штампов времени. Подробнее см. в руководстве по объектной модели IS-Builder, в разделе «Криптография и ЭП».

Мобильные приложения

Архитектура мобильных приложений Directum представляет собой классическую клиентсерверную архитектуру. Клиентское приложение настроено на определенный адрес веб-сервиса NOMAD. Взаимодействие происходит по протоколу HTTP или HTTPS:

Для работы с сервером NOMAD требуется создать учетные записи:

- пользователь Windows, от имени которого запускаются:
 - пул приложений для веб-сервиса;
 - процессы Directum SBRte и SBLogon с версии Directum 5.6.1 и выше;

Создается в операционной системе на веб-сервере. Права пользователя настраиваются автоматически при установке сервера, при необходимости настройте их вручную. Пользователя необходимо включить в группу «IIS_IUSRS»;

- регистрационная запись на SQL-сервере (Login) для внутренней связи сервера NOMAD с базой данных системы Directum. Создается в базе данных Microsoft SQL Server;
- пользователь для запуска процессов Directum SBRte и SBLogon. Создается в операционной системе на сервере. Используется только при работе с версиями системы Directum 5.6 и ниже.

Подробнее об учетных записях и правах доступа, необходимых для работы, см. в документе «Инструкция по установке», входит в комплект документации.

Взаимодействие сервера NOMAD с мобильными устройствами рекомендуется организовывать по протоколу HTTPS с использованием порта TCP **443**. Подробнее о настройке протокола см. в разделе <u>«Безопасность передачи данных»</u>.

При использовании мобильных приложений требуется обеспечить безопасность:

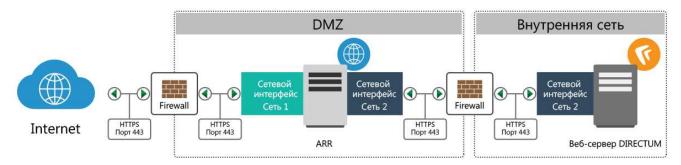
- сервера-посредника между внутренней сетью предприятия и сетью Интернет;
- канала связи;
- устройства пользователя;
- электронной подписи;
- данных приложения.

О политике конфиденциальности читайте на сайте Directum.

Безопасность сети предприятия

Одним из вариантов обеспечения безопасности сети предприятия является настройка демилитаризованной зоны. Подробнее см. статью <u>«Безопасность: Настройка демилитаризованной зоны»</u> на Directum Club.

Использование DMZ и брандмауэров для защиты вебсервера


Чтобы защитить веб-сервер от атак из внешних сетей, в организации можно настроить демилитаризованную зону (англ. Demilitarized Zone, DMZ) – конфигурацию сети, направленную на усиление безопасности сети организации. В рамках этой конфигурации сервера, открытые для общего доступа, находятся в отдельном изолированном сегменте сети. Данная концепция обеспечивает отсутствие контактов между открытыми для общего доступа серверами и другими сегментами сети в случае взлома сервера.

Примечание

Данные рекомендации также можно использовать для обеспечения безопасности сервера NOMAD и серверов с другими веб-приложениями.

Для этого понадобится настроить сервера:

- сервер ARR физический или виртуальный сервер, предназначенный для балансировки нагрузки веб-фермы IIS и реализованный с помощью продукта Microsoft Application Request Routing (ARR);
- сервер веб-доступа физический или виртуальный сервер, на котором развернут сервер вебдоступа к системе Directum.

Сервер ARR использует два сетевых интерфейса. Пример настройки сетевых интерфейсов сервера ARR и сервера веб-доступа:

- сетевой интерфейс ARR сети 1 210.220.230.240/255.255.255.0;
- сетевой интерфейс ARR сети 2 192.168.1.1/255.255.255.0;
- сетевой интерфейс сервера веб-доступа сети 2 192.168.1.2/255.255.255.0.

Настройка сервера ARR

На сервере ARR развернута веб-ферма, в которую добавлен сервер веб-доступа. Благодаря веб-ферме сервер ARR используется как прокси для веб-запросов из Интернета, адресованных серверу веб-доступа к системе Directum.

Примечание

Подробнее о создании и настройке веб-фермы IIS с помощью Application Request Routing см. в документе «Directum. Инструкция по установке», входит в комплект документации.

Чтобы минимизировать возможные способы доступа к серверу ARR, настройте правила брандмауэра ARR для входящих и исходящих соединений. Для сетевых интерфейсов сетей 1 и 2 разрешите входящие и исходящие соединения только через порт 443.

Безопасность передачи данных

Можно выделить следующие виды передаваемых данных:

- аутентификация:
 - логин и пароль при аутентификации по паролю (SOAP);
 - SSL Client Certificate authentication при аутентификации по сертификатам;
- бинарные данные:
 - тела документов;
 - фотографии сотрудников;
- метаинформация (SOAP). Например, карточки документов, справочников, заданий, переписка по заданиям.

Приложения могут взаимодействовать с сервисом по протоколу HTTP – открытому небезопасному каналу связи. Использовать его рекомендуется только в условиях работы с тестовой средой или демостендом.

При попытке подключения по открытым каналам приложения Directum Jazz и Directum Solo сообщат о возможной угрозе безопасности.

Для безопасной передачи данных применяются:

- VPN для подключения к сети организации;
- HTTPS для шифрования трафика.

VPN

Мобильное устройство можно подключить к VPN как нативными средствами операционной системы, так и с помощью сторонних решений: OpenVPN Connect, ViPNet Client VPN, Checkpoint Capsule.

Для шифрования канала ГОСТ-алгоритмами рекомендуется использовать ViPNet Client VPN.

HTTPS

Наиболее распространенным способом защиты передаваемых данных в веб-приложениях является HTTPS. Он включает в себя несколько криптографических протоколов транспортного уровня.

При попытке подключения по HTTPS с использованием невалидного сертификата мобильное приложение сообщает пользователю о возможной угрозе безопасности. Дальнейшая работа с сервисом невозможна.

Если сертификат выдан внешним доверенным центром сертификации (ЦС), то дополнительная настройка не требуется.

Если сертификат выдан внутренним ЦС, то необходимо настроить доверие к ЦС. Для этого установите сертификат удостоверяющего центра в соответствующее хранилище устройства.

Примечание

Сертификат <u>SHA-1</u> считается небезопасным. С версии iOS 10.3 для работы с ним требуется дополнительная <u>настройка</u>.

Рекомендации к сертификату см. в разделе «Настройка защищенного соединения».

Безопасность устройства

Безопасность устройства с установленным мобильным приложением обеспечивается:

- защитой от перебора паролей. После пяти неудачных попыток входа IP-адрес, с которого производится подключение, блокируется на 30 минут;
- ограниченным временем жизни сессии пользователя при отсутствии его активности. Для поддержания сессии пользователя используется идентификатор сессии, передаваемый в Cookie. По умолчанию продолжительность жизни сессии составляет один час с момента последней активности пользователя. Продолжительность жизни сессии настраивается администратором;
- централизованным управлением мобильными устройствами с помощью <u>MDM-решений</u>. Например, с помощью решения <u>SafePhone</u> администратор может удаленно установить доверенное приложение или запретить его использование;
- подтверждением подключения мобильного устройства пользователя к серверу NOMAD. Выполняется при входе пользователя в приложение. В зависимости от настроек подключение подтверждает администратор или пользователь. Запрос подтверждения приходит на электронную почту. Без подтверждения подключения данные не будут передаваться с сервера NOMAD на устройство;
- удалением данных приложений Jazz и Solo с мобильного устройства пользователем. Например, в случае утери устройства.
 - Для приложений Jazz с версии 1.7.1 и Solo с версии 2.1 доступно дистанционное удаление данных с мобильного устройства администратором. Также администратор может запретить работу устройствам, на которых установлены более ранние версии приложений.

Далее в разделе приведены рекомендации по обеспечению безопасности устройств на базе \underline{iOS} и Android.

Устройства на Android

При авторизации приложение передает реквизиты для подключения пользователя в открытом виде. Для безопасной передачи данных рекомендуется использовать HTTPS-соединение. При этом необходимо использовать сертификат, выданный доверенным центром сертификации.

Особенности хранения данных приложения:

- логин и пароль пользователя хранятся в системных аккаунтах устройства, пароль хранится в зашифрованном виде;
- при аутентификации по сертификату логин и пароль не используются и не хранятся на устройстве;

- загруженные документы хранятся в системной папке приложения в незашифрованном виде. Рекомендуется ограничивать доступ к устройству;
- данные пользователя хранятся в системной базе данных SQLite без шифрования;
- поддерживается работа с шифрованной файловой системой Full Disk Encryption.

Примечание

He рекомендуется использовать устройства с root-доступом, так как это снижает безопасность использования приложения.

Устройства на iOS

Приложение работает в изолированной области памяти устройства. Другие приложения не имеют к ней доступ. Безопасность данных пользователя обеспечивается средствами операционной системы.

Логин и пароль для подключения хранятся на устройстве с использованием сервисов <u>Keychain</u> и передаются в SOAP-пакете по HTTP-каналу. При аутентификации по сертификату логин и пароль не используются и не хранятся на устройстве.

Документы пользователя загружаются в контейнер приложения, доступ к которому из других приложений или с компьютера невозможен. Сторонние приложения могут получить доступ к документам, только если экспортировать их из Directum Solo.

Документы шифруются AES-алгоритмом. Для сохранности данных необходимо использовать блокировку устройства. Рекомендуется использовать PIN-код. Графический ключ или отпечаток пальца не являются достаточными мерами защиты.

Примечание

Не рекомендуется использовать устройства с jailbreak, так как это снижает безопасность использования приложения.

В Directum Solo для iOS дополнительно можно настроить шифрование документов средствами КриптоПРО. Если шифрование настроено, веб-сервис на время сеанса работы пользователя генерирует временный ключ, асимметрично шифруемый сертификатом пользователя, и шифрует все передаваемые документы ГОСТ-алгоритмами. В приложении документы также сохраняются в зашифрованном виде. Для просмотра или редактирования документа сессионный ключ расшифровывается закрытым ключом пользователя, и создается расшифрованная копия документа, которая удаляется по окончании сеанса работы в приложении.

Электронная подпись

Мобильное приложение Directum Solo использует для подписания механизмы:

- КриптоПро CSP;
- аппаратный ключ (токен);
- базовые СКЗИ, встроенные в ОС.

КриптоПро CSP

Подписание с использованием КриптоПро CSP поддерживается во всех мобильных приложениях Directum. Для подписания требуется клиентская лицензия СКЗИ «КриптоПро CSP».

На компьютере пользователя генерируется контейнер с закрытым ключом. Далее контейнер копируется на мобильное устройство и во внутреннее хранилище КриптоПро СSP. После успешного копирования контейнера псевдоним (алиас) сертификата и его пароль записываются в локальную БД SQLite на мобильном устройстве. В дальнейшем рекомендуется удалить контейнер из папки на устройстве и с компьютера пользователя.

При запуске мобильного приложения происходит инициализация КриптоПро CSP.

Работа с КриптоПро CSP различается в зависимости от ОС:

- Android мобильное приложение регистрируется в ОС как реализация ГОСТкриптографических алгоритмов. Это позволяет работать с ними, как с любыми другими алгоритмами, используя базовые средства ОС;
- iOS КриптоПро CSP встроен в приложение. Настраивается в разделе «Сертификаты» настроек приложения. Использует Microsoft Crypto API, реализуя ГОСТ-алгоритмы. Установка каких-либо дополнительных модулей не требуется.

Подписание с использованием КриптоПро CSP состоит из этапов:

- 1. Закрытый ключ загружается из хранилища по известному алиасу сертификата.
- 2. Подписываемый документ хешируется по указанному в сертификате алгоритму. Хеш формируется:
 - в ОС Android средствами ОС с использованием КриптоПро CSP;
 - в OC iOS средствами встроенного модуля КриптоПро CSP.
- 3. Полученный хеш вместе атрибутами, необходимыми для формирования подписи, подписывается в зависимости от ОС аналогично п.2.

Аппаратный ключ (токен)

Мобильные приложения поддерживают токены:

- Solo для iOS RutokenBT;
- Solo для Android RutokenBT и JaCarta microUSB.

С токенов можно использовать сертификаты с поддержкой алгоритмов ГОСТ и RSA. Для взаимодействия с токенами используется интерфейс стандарта PKCS#11.

Перед использованием токен рекомендуется отформатировать и установить использование шифрованного соединения.

Процесс подписания с помощью токена состоит из этапов:

- 1. Поиск подключенных токенов и формирование соединения с токеном.
- 2. Сопоставление пользовательских сертификатов сертификатам, найденным на токене, и определение используемого сертификата.
- 3. Аутентификация пользователя путем ввода PIN-кода токена.
- 4. Получение ID закрытого ключа, соответствующего найденному сертификату.
- 5. Тело подписываемого документа хешируется указанным в сертификате алгоритмом. Хеш формируется средствами ОС. Подробнее см. в разделе «КриптоПро CSP».
- 6. Полученный хеш передается в токен и подписывается закрытым ключом с указанным ID. При этом закрытый ключ не покидает токен, все криптографические преобразования выполняются аппаратно.

Базовые СКЗИ, встроенные в ОС

Для подписания используются средства, встроенные в ОС. Механизм зависит от используемой операционной системы: <u>Android</u> или <u>iOS</u>.

Поддерживается подписание сертификатами Microsoft CA.

Устройства на Android

Для подписания используются базовые средства ОС Android. Поддерживаются только RSAсертификаты.

Примечание

В ОС Android для работы с криптографией используется набор библиотек Spongy Caste из стандартной поставки ОС.

На компьютере пользователя создается контейнер с закрытым ключом с расширением .pfx или .p12. После этого контейнер копируется на мобильное устройство. На устройстве сертификат с закрытым ключом устанавливается в системное хранилище KeyChain. В дальнейшем контейнер рекомендуется удалить из папки на устройстве и с компьютера пользователя.

Подписание базовыми средствами ОС Android состоит из тех же этапов, что и подписание средствами КрипроПро CSP.

Устройства на iOS

Подписание реализовано средствами платформы .NET – обертки Microsoft RSACryptoServiceProvider. Поддерживаются только RSA-сертификаты.

Примечание

Платформа .NET в мобильных приложениях – это входящая в состав приложения кроссплатформенная реализация платформы .NET <u>Mono</u>.

На компьютере пользователя создается контейнер с закрытым ключом с расширением .pfx. После этого контейнер копируется на мобильное устройство через iTunes в раздел «Документы» приложения.

Далее в разделе «Настройки» приложения ключ импортируется в закрытое хранилище и автоматически удаляется из открытого раздела «Документы».

Подписание базовыми средствами платформы .NET состоит из тех же этапов, что и подписание средствами <u>КрипроПро CSP</u>.

Хранение контейнера с закрытым ключом сертификата Microsoft CA на мобильном устройстве

Устройства на Android

Контейнер с закрытым ключом сертификата Microsoft CA хранится в системном хранилище <u>KeyChain</u>. Приложение разово запрашивает у пользователя доступ к контейнеру и сохраняет полученный алиас в локальную БД SQLite на мобильном устройстве. Последующие обращения к контейнеру происходят по уже известному алиасу без отдельного запроса.

При хранении закрытых ключей в хранилище KeyChain на устройстве должна быть установлена блокировка экрана. Рекомендуется использовать пароль или пин-код.

Устройства на iOS

Контейнер с закрытым ключом помещается в файловый каталог приложения и доступен только для процессов, авторизованных на обращение. Контейнер хранится в зашифрованном виде.

Чтобы получить доступ к ключу, мобильное приложение Directum Solo генерирует уникальное имя для каждого сохраняемого контейнера. Приложение сохраняет алиас и пароль для контейнера в системное шифрованное хранилище <u>KeyChain</u>. Доступ к хранилищу запрещен, если устройство заблокировано пин-кодом или TouchID.

Безопасность данных

Ограничение доступа по логину или группе пользователей

Администратор может настроить доступ к приложениям NOMAD по механизмам белого и черного списков. В настройках плагина UserGroupsValidationPlugin, входящем в состав сервера NOMAD, указываются логины и группы пользователей, для которых доступ к приложениям разрешен или запрещен.

Защита конфиденциальной информации

Для соответствия требованиям законодательства РФ в области хранения и обработки конфиденциальной информации рекомендуется настроить доступ к документам и записям справочников. Доступ настраивается для пользователей, групп пользователей или клиентских приложений. Можно запретить или разрешить выгрузку данных на устройство.

Настройки задаются администратором в файле IsBuilderAdapter.config.

Блокировка приложения по истечении определенного времени бездействия пользователя

В Directum Solo можно настроить блокировку приложения, которая будет срабатывать по истечении 15 минут неактивности пользователя. Снять блокировку можно по пин-коду или отпечатку пальца. После 5 неудачных попыток входа ввод пин-кода или отпечатка пальца блокируется на некоторое время.